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Abstract
Semigroups describing the time evolution of open quantum systems in finite-
dimensional spaces have generators of a special form, known as Lindblad
generators. The simple generators, characterized by only one operator, are
analyzed. The complete set of all the stationary states is presented in detail,
including a formula to calculate a stationary state from the generating operator.
Also the opposite task can be fulfilled, to construct an evolution leading to a
prescribed stationary state.

PACS numbers: 03.65.Yz, 05.40.−a, 42.50.Dv, 03.65.Fd

1. Introduction

Complete positivity is an essential property of maps acting on states of open quantum systems,
representing their change in time. It was in the 1970s, starting with [K71], when this has
been discovered. In the following, the generators of semigroups formed by maps with this
property have been identified for finite-dimensional systems, and also for infinite systems,
provided a strong continuity property is assumed in addition to complete positivity, [GKS76,
L76]; they are now known as ‘Lindblad generators’. The interest at that time has been
mainly in connection with non-equilibrium thermodynamics, see [D76, S80, AF01, BP02]
and references therein.

New interest has arisen recently in connection with quantum engineering of small systems,
and it seems necessary to enlarge our knowledge about such semigroups. So we proceed in
the analysis of these completely positive semigroups, acting on states for systems with finite-
dimensional Hilbert spaces. We are interested in characterizing both the set of invariant states
and the paths of changing states. The early results on invariance stated in [S76, F78, S80]
concern systems under special conditions on the set of generators. We give more general
detailed insight, not needing these restricting conditions. Pioneering work has been done by
K Dietz [D03, D04, D05], identifying ‘superselection sectors’, discussing the change in time
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of entropy and presenting a formula which relates a stationary state to the operator which
appears in a simple generator. In the present paper, his findings are imbedded into a complete
mathematical characterization. In addition we shed some light on the approach to equilibrium,
on the geometry of the paths in the set of states.

There are three types of physical processes one wants to describe: decay, dissipation and
decoherence. Decay of excited states leads—in an idealized model—to a complete annihilation
of some subspaces of the Hilbert space. Dissipation, on the other hand, leads to a spreading of
the state over a large space, getting more mixed, in case it started as a pure state. It is somehow
the counterpart to decay and also to conservation laws. In reality and also in our studies both
of these effects occur simultaneously, and conservation laws may impose some structuring.
Decoherence in a wide sense is dephasing; in a preferred basis the off-diagonal elements of
the density matrix are diminishing and finally vanishing. Each type of these processes has its
mathematical expression in properties of the quantum-dynamical semigroup’s generator.

In this paper, we concentrate on simple generators, the building blocks for generators of
general completely positive semigroups—a characterization of complete positivity is presented
in the appendix. For two-dimensional systems, a.k.a. qubits, we present a detailed description.
In a companion paper, we extend our interest to the general quantum-dynamical semigroups
on finite-dimensional Hilbert spaces.

Our starting point, the connection with the earlier studies, is the result of [GKS76, L76].

Proposition 1 (generators of semigroups). Every generator of a semigroup of completely
positive trace preserving maps T t : ρ(s) �→ ρ(s + t) for t � 0 on the set of finite-dimensional
density matrices ρ can be written in the form

ρ̇ = D(ρ) = −i[H, ρ] +
∑

α

Dhα (ρ), where H = H †, (1)

where the dissipative parts, the Dhα , are as follows.

Definition 2 (simple generators).

Dh(ρ) = hρh† − 1
2 (h†hρ + ρh†h). (2)

The commutator with a Hamiltonian alone generates a unitary time evolution, which is
well known in principle. We concentrate on the other building blocks, the simple generators
Dh and the evolutions they generate.

It is well known that the division of D into a sum of several simple generators is not
unique. Different sets of operators hα can be attributed to a given generator D. The attribution
of a single h to a simple generator on the other hand is mostly unique, with few exceptions.
The method of proof for this statement uses a structuring of the Hilbert space and of the
operator h, which reflects some characteristic properties of the simple D. These methods are
presented in section 3.1, At the end of the same section the mentioned uniqueness is stated in
lemma 7 and then proved.

Our analysis starts with studying the decompositions of h, and their relations to the action
of the generator. It turns out that the time evolution of ρ in the convex set S of density matrices
can be analyzed by studying the action of D on the boundary of S, which is the set of density
matrices with rank less than the dimension of the Hilbert space. The structure of the operator
h and the corresponding structuring of the Hilbert space are here of prime importance. Only
a density matrix the support of which is an eigenspace of h does not dissipate in first order of
t into higher dimensional subspaces. Therefore, we call these faces of S which are formed by
ρ with support being an eigenspace or a generalized eigenspace of h the ‘lazy faces’. An even
stronger condition marks certain eigenspaces and the corresponding faces as enclosures. No
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path ρ(t) leads into or out of them, some conservation laws are valid. A closer look on the
action of Dh on density matrices in special faces lets us determine precisely the complete set
of stable, ‘stationary’, states. These results are presented in theorem 15. A note on naming:
in the literature the characterization of a state as ‘invariant’, ‘stable’ or ‘stationary’ is used,
each one meaning ρ̇ = 0. In this paper, we favor ‘stationary’, and we are sloppy in not
differentiating ‘state’ and ‘density matrix’.

Further analysis, making a detour using the dual time evolution of the operators and the
Kadison inequality, leads to the insight that there are no periodic evolutions, no circular paths
for the ρ(t). All paths in the space S lead to the stationary states. The entropy of the states
along a path may increase or decrease and may even pass through several local maxima and
minima.

Some examples, most of them with qubits, demonstrate the findings of our analysis.
At various places, we have to do calculations concerning a splitting of the Hilbert space

into two orthogonal subspaces. The elaborated formulas are collected in appendix A.2.

2. The set of generators

2.1. Basic properties of the generator’s actions

By inspection of definition 2, it is obvious that the semigroups generated by the superoperators
Dh preserve the trace and selfadjointness of matrices:

d

dt
Trρ(t) = Tr[D(ρ(t))] = 0,

d

dt
σ †(t) = D(σ †(t)) = [D(σ (t))]†. (3)

To see that they also preserve positivity, we look at the parts of the simple Dh separately.
The first part, mapping a positive ρ to a non-negative operator hρh†, causes an increase of ρ.
The second part causes a decrease of the eigenvalues. The argument goes as in proving the
Feynman–Hellmann theorem and provides the following proposition.

Proposition 3 (a differential inequality). If r(t) is a non-negative eigenvalue of ρ(t), its
change in time is bounded from below as

ṙ(t) � −‖h‖2r(t). (4)

Proof. Differentiating the eigenvalue equation ρ(t)ψ(t) = r(t)ψ(t),—Rellich’s theorem
guarantees that all terms are analytic functions—and using 〈ψ |ψ̇〉 = 0 gives

ṙ(t) = 〈ψ |ρ̇|ψ〉 = 〈ψ |(hρh† − 1
2 (h†hρ + ρh†h)

)|ψ〉
� − 1

2 〈ψ |(h†hρ + ρh†h)|ψ〉
= −〈ψ |h†h|ψ〉r(t). (5)

�

This implies that the positive eigenvalues rj of the density operator obey in the course of time
the inequality

rj (t) � exp(−‖h‖2t) · rj (0) > 0, (6)

and positive eigenvalues stay positive. By continuity of the time evolution, zero eigenvalues
cannot get negative, the positivity of density matrices is preserved.

So the evolutions do not leave S. Moreover, there exist stationary states, i.e. states which
do not change in the course of time.
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Proposition 4 (existence of stationary states). For each simple generator Dh there exists a
stationary state ρ∞ satisfying Dh(ρ∞) = 0. If h has zero as an eigenvector, each state with
support in the zero subspace is stationary. If h does not have zero as an eigenvalue, one may
construct a stationary state by

ρ∞ = (h†h)−1/Tr[(h†h)−1]. (7)

Proof. If ρ = ∑
j rj |φj 〉〈φj | where h|φj 〉 = 0, obviously hρ = 0, ρh† = 0 and

therefore Dh(ρ) = 0 hold. For h without zero as an eigenvector, consider the polar
decomposition h = U |h|, where |h| =

√
h†h and U = h|h|−1. The evolution equation

for ρ∞ = |h|−2/Tr[|h|−2] is

ρ̇∞ = U |h|ρ∞|h|U † − 1
2 (|h|2ρ∞ + ρ∞|h|2) = (U · U † − 1)/Tr[|h|−2] = 0. �

This relation between h and ρ∞ has already been given in [D03]. The questions of
uniqueness and of attraction to paths of other states are answered in theorems 15 and 17.

2.2. Superoperators

In the following, it will be useful to endow the linear space of matrices with an inner product
〈σ |ρ〉 = Trσ †ρ, and consider matrices as elements of this space, the Hilbert–Schmidt,
HS space. In the middle of the set of density matrices S is the maximally mixed state
ω = 1/dim(H). The square distance ‖ρ − ω‖2 is related to the ‘Fermi entropy’ Trρ(1 − ρ),
on which we make some remarks in subsection 4.3.

Consider a generator D as a superoperator acting on the HS space. In this respect the
semigroup which it generates can be extended to a group. For negative t the trace and
selfadjointness of matrices are still preserved, but not the positivity.

The adjoint D† can be looked upon as generator of the dual time evolution of observables
in the Heisenberg picture.

D†
h(f ) = h†f h − 1

2 (h†hf + f h†h). (8)

Preservation of the trace of density operators corresponds to preservation of the unity under
the dual time evolution of observables, the semigroup generated by D† is ‘unital’. (That both
D and D† are unital and trace preserving occurs, if h is a normal operator.)

Diagonalizability of D is rather exceptional. Nevertheless there exists for each D its set of
eigenvalues {λ}, equal to the set of zeros of the characteristic polynomial det(D−λ1), a set of
proper eigenmatrices {σ }, obeying Dσ = λσ , and, in some cases of degeneracy, generalized
eigenmatrices, obeying (D − λ)nσ = 0. As in any set of linear differential equations, any
ρ(t) can be expanded into a sum of such σ · eλt · Polynomial(t). Some general properties of
eigenvalues and eigenmatrices are presented in subsection 3.4. Examples and special cases
will be presented for two-dimensional systems in subsection 4.2.

The generators D, defined in proposition 1, with H = 0 form a convex cone. The simple
generators make the extremal rays. Nevertheless closure adds the generators of unitary groups.

Proposition 5. Generators of unitary time evolution can arise as limit of simple Lindbladian
generators.

Proof. Define h(λ) := 2λ−11 − iλH where H † = H . Consider the limit λ → 0:

Dh(λ)(ρ) = −i[H, ρ] + λ2DH (ρ) → −i[H, ρ]. (9)

�
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Note that the norm of h(λ) diverges, but Dh(λ) converges in norm. So it is to be expected
that a thorough inspection of the extremal rays, containing the building blocks, the simple
generators, will give a good basis for the analysis of all GKS-Lindblad generators.

3. Simple generators

3.1. Splitting, decomposition, structure

We consider the generators D = Dh, defined in definition 2. To analyze their properties it
is convenient to find structures on two levels. The structure in the large concerns a kind of
enclosure: subspaces of H with the property that the system can neither leave nor enter any
of them in the course of time. (These subspaces are related to the superselection sectors in
[D04].) P is a projector onto such a subspace if and only if it obeys

[P, h] = 0. (10)

Each operator h appearing in a generator Dh can be decomposed as

h =
⊕

j

hj (11)

with a decomposition of the Hilbert space H = ⊕
j Hj into mutually orthogonal subspaces

Hj = PjH, where each hj acts on Hj and is not further decomposable.
Aim and purpose of this decomposition in the large is to reduce the analysis of the

superoperator’s action on any ρ to the analysis to the split action on the blocks PjρPj and
PjρP�. It is

Dh(PjρPj ) = hjρh
†
j − 1

2

[
h
†
jhjρ − ρh

†
jhj

] = Dhj
(PjρPj ), (12)

for the diagonal blocks in the decomposition of ρ into block matrices PjρP�. The off-diagonal
blocks give the phase relations between the enclosure-like subspaces.

Dh(PjρP�) = hjρh
†
� − 1

2

[
h
†
jhjρ − ρh

†
�h�

]
. (13)

In the case of an appearance of equivalent parts hj there is the possibility of unitary
reshuffling the corresponding subspaces: Collect the set of equivalent parts as h1, . . . , hN , i.e.

∀{j, �} ⊂ {1, . . . , N} ∃ unitary Uj� : hj = Uj�h�U
†
j�.

Represent their sum h1 ⊕ · · · ⊕ hN as a tensor product 1N ⊗ h1 acting in C
N ⊗ H1. The

action of a unitary operator V ⊕ 1 in this tensorial representation gives a unitary reshuffling
of eigenspaces Hj .

Proposition 6 (splitting of operators and of spaces). The splitting h = ⊕
j hj with a set of

orthogonal projectors Pj which commute with h is unique, except for a unitary reshuffling of
eigenspaces Hj = PjH on which equivalent parts hj are acting.

The action of the generator splits as

Dh(PjρP�) = PjDh(ρ)P�. (14)

Proof. By induction, one may find a maximal set of mutually commuting orthogonal projectors
Pj , all commuting with h: if there exists one P commuting with h, one may start with the
set {P,1 − P }. Then one searches for a further splitting P = P2 + P3, Pj commuting with
h. If such a further splitting exists, one replaces P by P2 and P3. The same for 1 − P , and
then further splittings of Pj , and so on. At the end of this procedure, one has the splitting
H = ⊕

j PjH, and h = ⊕
j PjhPj , which cannot further be refined.

5
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Now collect piecewise all the mutually equivalent parts hj1 , . . . , hjn(j)
as 1n(j) ⊗hj1 acting

in C
n(j) ⊗ Hj1 . All the possible families {Pj } of projectors can be observed in this way: the

operator h commutes with each projector onto V ⊗Hj1 , where V is any subspace of C
n(j), and

h commutes with no other projector.
The split action of the parts on diagonal and off-diagonal blocks of ρ, stated in

equations (12) and (13), is obvious. �

This decomposition is an important step in the analysis of the time evolution. An algebraist’s
point of view is that the projectors commuting with h create a subalgebra of conserved
observables, D†(Pj ) = 0. The law of conservation implies that the probability for the system
to remain in an enclosing subspace PjH is constant in time. The evolution inside the subspace
is determined by the action of Dhj

. Studying the total action of Dh consists of determining the
action of single Dhj

with indecomposable hj , and studying the evolution of the phase relations
between different subspaces Hj . The indecomposable parts acting on diagonal blocks of ρ

are studied in sections 3.2 and 3.3, The evolution of the phase relations, represented in the
off-diagonal blocks PjρP�, is discussed in sections 3.3 and 4.1.

The structure on the second level is related to representations of an indecomposable h—
which may enter in the large as an indecomposable part hj —in a Schur triangulated form,
as an upper triangular matrix, see e.g. [L69]: on the diagonal are the eigenvalues in arbitrary
sequence, below the diagonal there are only zeros. An indecomposable h of dimension greater
than 1 is not diagonalizable, one has to be aware of the generalized concepts: the eigenspaces
and generalized eigenspaces are subspaces PH with projectors P, with the characterizing
property

hP = PhP. (15)

These P are orthogonal projectors, P = P 2; each one-dimensional P projects onto a proper
eigenvector. These eigenvectors are in general not mutually orthogonal. The eigenspaces and
generalized eigenspaces are spanned by the proper and the generalized eigenvectors, ψλ,j,0

and ψλ,j,m, of h:

(h − λ)ψλ,j,0 = 0, (h − λ)ψλ,j,m = ψλ,j,m−1.

Note that a generalized eigenspace containing ψλ,j,m has to contain also all the ψλ,j,µ with
µ < m.

To be sure about the relevance of the properties of h for the action of Dh it is helpful to
study the uniqueness of attributing h to a given simple generator. Already here the method of
Schur triangulation appears as an important tool.

Lemma 7. If it is possible to write a generator D as a simple Dh, the attribution of h is unique
up to a phase factor, unless h is a ‘normal’, i.e. diagonalizable, operator.

Proof. The strategy of the proof is to consider the equations ρ̇ = Dh(ρ) for the given h, with
a set of properly chosen matrices ρ as determining the operator k which shall give the same
ρ̇, by ρ̇ = Dk(ρ). The condition of non-diagonalizability of the given h can hold only for
n = dim(H) � 2. The proper choice of ρ requires a proper choice of the basis vectors, giving
a triangular matrix representation of h and enabling a proof by induction on the rank of ρ.
If the given h has a generalized eigenvector ψλ,1, choose the basis for its decomposition and
its Schur triangulation in such a way that ψλ,0 is the first basis vector and ψλ,1 is the second
one. If h has only proper eigenvectors, then, because of its non-diagonalizability, there must
be a non-orthogonal pair of them, ψλ,0 and ψµ,0. Choose this pair to form the first two basis
vectors: ψλ,0 and the normalized ψµ,0 − γψλ,0, where γ = 〈ψλ,0|ψµ,0〉. Then we proceed by

6
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induction on the dimension of the space and use the chosen basis. We refer to the formulas
presented in appendix A.2.

For dimension 2, the action of D on the matrix ρ = ( r q

q† s

)
with q = 0 and s = 0

determines c = 0 for the matrix k = (a b

c d

)
. The action on ρ with r = q = 0 determines first

|b|, which is not zero, due to the proper choice of the basis vectors. Then via q̇ = a†br it
determines a†b. Finally, acting on ρ with r = q = 0, by q̇ = (

bd† − 1
2a†b

)
s it determines

bd†. So the matrix k is determined up to a phase as k = h.
For higher dimensions use the block matrix form, as in appendix A.2, with rank(A) =

rank(R) = n − 1, where S = s and D = d are numbers, B = |b〉 and Q = |q〉 are vectors.
The action on a ρ with |q〉 = 0 and s = 0 is Ṙ = DA(R) and—there is the induction
hypothesis—this determines A up to a phase. Note that Ṙ = 0, so A = a1. The action on
this ρ is also ṡ = 0, determining C = 0 and |q̇〉 = RA†|b〉. Choosing a phase for A, the
action on ρ with R = 0, |q〉 = 0 determines |b〉 via Ṙ = |b〉s〈b| and via |q̇〉 from before; and
it determines d via |q̇〉 = s(d†|b〉 − 1

2A†|b〉) in case |b〉 = 0. If |b〉 = 0, consider the action
on a ρ with |q〉 = 0: |q̇〉 = d†A|q〉 − 1

2 [A†A + |d|2]|q〉. This is a quadratic equation for the
number d, but there are at least two different equations for the components of |q〉 to determine
d. So the proof of uniqueness is completed for nondiagonalizable h. �

If h is a diagonal operator, all the matrix elements of ρ evolve in time independently of
each other,

ρ̇i,j = [
hih

†
j − 1

2 (|hi |2 + |hj |2)
]
ρi,j ,

the diagonal of ρ is invariant in time. Only diagonal k in Dk can give the same evolution. But
there are not always enough equations to determine the matrix elements on the diagonal of k.
There remains some freedom in choosing k with |ki −kj | = |hi −hj | and Im

(
kik

†
j

) = Im
(
hih

†
j

)
in special cases, e.g. if there are not more than two different values of hj , or if all hj are real.
But the qualitative structure of possible k is fixed: it is determined that it is a diagonal operator
in the same basis, with the same degeneracies.

3.2. At the boundary of the set of states

It turns out that the time evolution of ρ in the set S can be analyzed by studying the action of
D on the boundary, the set of density matrices with rank less than the dimension of the Hilbert
space. Referring to inequality (6), we note that it implies one of the central observations:

Lemma 8 (no purifying in finite time). The rank of ρ(t) cannot decrease.

An observation of almost sure increase of the rank serves as a companion to this exclusion
of a decrease.

Lemma 9. Consider ρ(t) with rank(ρ(0)) < dim(H). At least one eigenvalue which is zero
for ρ(0) becomes strictly positive in first order in t, if and only if the range of ρ(0) is not an
eigenspace or a generalized eigenspace of h.

Proof. Consider the analytic expansion of ρ(t) and its eigenvalues r(t), using the eigenvectors
related to them, and consider the terms linear in t.

ṙ(0) = 〈ψ |ρ̇(0)|ψ〉.
Write h in Schur triangulated form, such that the upper left part R (we use here the notation
of appendix A.2) acts as a matrix of full rank in the range of ρ(0). Use the block matrix

7
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equation (A.9), with R the restriction of ρ to its range, φ an eigenvector to the eigenvalue zero,
so it is not in the range of R and

ṙ(0) = 〈φ|Ṡ(0)|φ〉 = 〈φ|CRC†|φ〉. (16)

Observe that, according to (15), the range of ρ(0) is a (generalized) eigenspace, iff C = 0.
Since R is of full rank there is at least one φ giving a strict increase ṙ > 0, iff C = 0. �

Note the correspondence between subspaces of the Hilbert space H and faces of the set
of states S: each face consists of density matrices whose range is some subspace of H. Since
all subspaces of H cannot be eigenspaces of a non-constant operator, the corresponding faces
form a zero-set in the boundary of the set of states. Here comes the structure of the operator
h into play.

Definition 10. We define each face which corresponds to an eigenspace or a generalized
eigenspace of h as a lazy face. In a formal notation: if P is the projector onto the range of ρ,
and if P fulfils property (15) i.e. hP = PhP , then, and only then, ρ is in a lazy face.

The reason for this definition is lemma 9, and its strengthening in lemma 11. Eigenvalues
r(t) which are zero for t = 0 do not increase in first, not even in second order in t if ρ(0) is
in a lazy face. They may increase in third or a higher order, or not at all. Examples will be
presented in subsection 4.2.

Lemma 11. Consider ρ(t) with ρ(0) in a lazy face. Each eigenvalue r(t) beginning as
r(0) = 0 does not increase in first and not in second order in t.

Proof. The eigenvalue equation ρ(t)ψ(t) = r(t)ψ(t) has to hold in each order of t. Consider
the splitting ψ = χ ⊕ φ, with χ(0) = 0, the block matrix form presented in appendix A.2,
with C = 0,Q(0) = 0, S(0) = 0, and the Taylor expansions. For the blocks of ρ we need

R(t) = R + O(t), Q(t) = − 1
2RA†Bt + O(t2), S(t) = 1

2B†ARA†Bt2 + O(t3). (17)

The first order of the eigenvalue equation, ρ̇(0)ψ(0) + ρ(0)ψ̇(0) = ṙ(0)ψ(0), gives two
equations, one for the vector component orthogonal in the range of ρ(0),

− 1
2B†ARχ(0) = ṙ(0)φ(0) ⇒ ṙ(0) = 0,

and one for the component in the range of ρ(0)

− 1
2RA†Bφ(0) + Rχ̇(0) = 0 ⇒ χ̇(0) = 1

2A†Bφ(0).

The last implication uses the invertibility of R, due to its full rank. From the second-
order equation we need only the part in the subspace orthogonal to the range of ρ(0) :
1
2 ρ̈(0)ψ(0) + ρ̇(0)ψ̇(0) + 1

2ρ(0)ψ̈(0) = 1
2 r̈(0)ψ(0) gives

1
4B†ARA†Bφ(0) − 1

2B†ARχ̇(0) + 0 = 1
2 r̈(0)φ(0) ⇒ r̈(0) = 0,

since the terms on the left-hand side cancel when the identity for χ̇(0) is used. �

There is a way to geometrically characterize the action of D on the states in a face. Define
the mid-point ωf of the face as

ωf = 1

n

∑
j

|φj 〉〈φj |,

where φj form a basis of the n-dimensional subspace corresponding to the face. Consider the
projection of the path ρ(t) in the Euclidean space of Hermitian matrices onto the line which

8
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connects ωf with the maximally mixed state ω in the center of S. This projection gives a
special coordinate for the HS vector pointing from ωf to ρ(t):

Tr[(ρ(t) − ωf )(ω − ωf )] = 1

n
Tr[S(t)]. (18)

Only for lazy faces does this coordinate not grow linearly in t. It grows quadratically in t, see
(17), so this geometrical characterization is not as strong as the statements on the eigenvalues
made in lemma 11.

In the next section, we explain in detail how an appearance of zero as an eigenvalue for
h has consequences in the investigations on the set of invariant states. They can be elements
of the corresponding lazy face. Concerning the dimension of such a face we state as a remark
the following lemma.

Lemma 12. An indecomposable operator h of rank n cannot have more than n/2 proper
eigenvectors to a degenerate eigenvalue.

Proof. Write h in a triangulated form and use m proper eigenvectors to the degenerate
eigenvalue λ as the first m basisvectors.

h =
(

A B

0 D

)
,

where A = λ1m. The rectangular matrix B cannot have more rows than columns, i.e.
m � n − m; otherwise, the rows could not be linearly independent and there would be a
unitary transformation of the m-dimensional proper eigenspace such that m − (n − m) rows
of the transformed B would be zero, contradicting the undecomposability of h. �

3.3. Stationary states

The upshot of the investigations on the action of Dh at the border is the following two
complementary propositions.

Proposition 13 (quitting the boundary). Dh has no stationary state at the boundary if h is
indecomposable and does not have zero as an eigenvalue.

Proof. Consider ρ at the boundary, write it as a block matrix (notation as in appendix A.2
with R a matrix of full rank, i.e. R has no zero-eigenvalues, Q = 0 and S = 0. If C = 0, use
equation (A.9), which implies Ṡ = 0. Otherwise, apply equation (A.11): Q̇ = RA†B = 0,
since neither R nor A† have zero eigenvalues and B = 0 because of the non-splitting property
of h. �

But otherwise, one of the lazy faces may be an attractive face.

Proposition 14 (eigenvalues zero are attractive). If h is indecomposable and has zero as an
eigenvalue, then the proper eigenspace to this eigenvalue zero corresponds to a face with
stationary states. This face is an attractor, and no other state is stationary.

Proof. If ρ is in this face, obviously hρ = 0, ρh† = 0 and therefore Dh(ρ) = 0 hold. On the
other hand, if ρ is not in this face, one analyzes P ⊥ρP ⊥, where P is the projector onto the
proper eigenspace belonging to the eigenvalue zero of h. Use the triangulated block matrix
form presented in appendix A.2, with A = 0 acting on the zero-subspace, with C = 0, and
S = P ⊥ρP ⊥. Equation (A.12) reduces to Ṡ = DD(S) − 1

2 [B†BS + SB†B], and d
dt

Tr[S] =
9
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−Tr[BSB†]. Looking at S∞ = limT →∞ 1
T

∫ T

0 S(t)dt , which must be stationary in time, we
find that both terms have to vanish separately in Ṡ∞ = DD(S∞) − 1

2 [B†BS∞ + S∞B†B] = 0.
First, assume h does not have improper eigenvectors to the eigenvalue zero. This means

that all the zeros in the diagonal of the triangulated h appear in A and D = P ⊥hP ⊥ is without
zero-eigenvalues. Since h is indecomposable, B = 0. If ρ has S = 0, then, as is stated in
proposition 13, DD(S) = 0 unless S is a matrix of full rank without zero eigenvalues; but
then B†BS + SB†B = 0, acting as emptying out the subspace which is orthogonal to the
zero-subspace, and leading to S = 0.

Now it remains to consider h with improper eigenvectors to the eigenvalue zero. These
zeros appear in the diagonal of D = P ⊥hP ⊥, at least one of them as a proper eigenvalue of D,
which acts in P ⊥H, a space of lower dimension than that where h acts. We make an induction
on the dimension of the Hilbert space. The induction hypothesis is that the sub-subspace K
spanned by the proper eigenvectors for the zeros of D makes an attractive face for S̆(t), which
is defined by d

dt
S̆ = DD(S̆), one part of the time evolution of S(t). The stationary S∞ vanishes

on H−K. But the sub-subspace K is an improper eigenspace for h, for each |ψ〉 ∈ K one has
B|ψ〉 = 0. So d

dt
Tr[S(t)] = −Tr[BS(t)B†] = 0 for each S which does not vanish on K, and

P ⊥H is emptied out in the course of time. �

Theorem 15 (all the stationary states for simple generators).

(1) Dissipation. If h is indecomposable and has no zero-eigenvalues, there is a unique
stationary state in the interior. It is

ρ∞ = (h†h)−1/Tr[(h†h)−1]. (19)

(2) Decay. If an indecomposable h does have zero-eigenvalues, the stationary states form an
attractive face, corresponding to the space spanned by the zero-eigenvalues.

(3) Elementary dephasing. If, in the other extreme, h is diagonalizable, the set of invariant
states is the set of density matrices commuting with h.

(4) Stationary splitting. If h is decomposable, h = ⊕
j hj , each hj indecomposable, the

direct sums of stationary states ρj of its parts form the set of all the stationary states
which do not have phase relations between the independent subspaces Hj .

(5) Dephasing of parts. If h is decomposable, there is a set of invariant phase relations
ρj,� between the subspaces which are domains of definition of hj and h�, if and only if
either both hj and h� have zero-eigenvalues, or hj

∼= h�. In the first case the invariant
off-diagonal block matrices are ρj,� = ∑

α,β cα,β |vj,α〉〈w�,β | where the |vj,α〉 and |w�,β〉
are the proper zero-eigenvectors of hj and h�. In the second case any invariant phase
relation ρj,� is equivalent to ρj multiplied with some complex number, where ρj

∼= ρ� is
the stationary state of Dhj

.

Proof. (a) The stationarity of ρ∞ has been stated and proved in proposition 4 and in its proof.
Suppose there were two different stationary states, ρ0 and ρ∞. By linearity of the evolution
equation, the whole line ρ0 + λ(ρ∞ − ρ0) would consist of invariant matrices. But this line
would intersect the boundary where there are no stationary states, see proposition 13.

(b) See proposition 14.
(c) That [h, ρ] = 0 implies Dh(ρ) = 0 is obvious. The off-diagonal elements obey

ρ̇i,j = (
h∗

i hj − 1
2 (|hi |2 + |hj |2)

)
, which is not zero, if hi = hj . For details on the decrease of

phase relations ρi,j in this case see subsection 4.1.
(d) That is the combination of the previous results, using proposition 6.
(e) Any density matrix ρ for the whole Hilbert space H can be considered as a big

block matrix with entries ρj,�, corresponding to the splitting of H = ⊕
j Hj defined in

10



J. Phys. A: Math. Theor. 41 (2008) 065201 B Baumgartner et al

proposition 6. Each ρj,� has a time evolution on its own, without any mixing with the other
blocks. The stationary diagonal elements ρj,j have been identified in (a)–(d). Knowledge
about them, together with the general preservation of positivity, helps us to find possible
invariant off-diagonal blocks ρj,�. So, for any pair hj , h� of indecomposable parts of h, we
look at a state ρ restricted to the subspace Hj ⊕ H�.

First assume that hj has zero as an eigenvalue. Since positivity is preserved as t → ∞,
and since stationary elements ρj,j reside on the subspace spanned by zero-eigenvectors, an
invariant ρj,� must also obey hjρj,� = 0. Its time evolution is ρ̇j,� = − 1

2ρj,�h
†
�h�, and this

can vanish only if ρj,�h� = 0. Invariant phase relations exist therefore only if also h� does
have zero eigenvectors. The stationary ρj,� can then be expanded in ket-bra products of
zero-eigenvectors.

Now consider the case that both hj and h� are indecomposable and do not have zero as
an eigenvalue. Assume that an invariant ρj,� = 0 exists. Keeping the diagonal blocks ρj,j

and ρ�,� fixed, given by the unique stationary states determined by hj and h�, multiplied with
any nonzero weights, the off-diagonal elements can be chosen with some factor λ, as λρj,�

and ρ�,j = λ∗ρ†
j,�, such that the whole ρ is at the boundary of the set of states. Now we

refer to the formulas stated in appendix A.2, formula (A.9) and the following lines. As is
shown there, the density matrix, now represented by R acting on a subspace, is invariant only
if C = 0 and also RA†B = 0. Now R has no zero-eigenvalues, and A has a subset of the
whole set of diagonal elements of hj ⊕ h� as eigenvalues, also without zeros. So B = 0 must

hold. But then hj ⊕ h�
∼=

(A 0
0 D

)
commutes with the projector P = (1 0

0 0

)
. Since neither hj nor

h� commute on their domains of definition PjH and P�H with anything else but the constant
operators, the only possibility for such a nontrivial P is the unitary equivalence of hj with h�:
hj = V h�V

†, V · V † = 1j ,

P = p1j +
√

p(1 − p)V +
√

p(1 − p)V † + (1 − p)1�.

This unitary equivalence implies then the equivalence of the invariant blocks with some factors,
equivalence of cj · ρj,j with cj,� · ρj,� and c� · ρ�,�. �

We may reformulate the results, so that equivalent parts are collected as factors in a
tensor product: if one knows the stationary states ρj,α for an indecomposable hj , one knows
all possible states for 1 ⊗ hj ; they are

∑
α σα ⊗ ρj,α , for any positive matrix σα which has

Tr[σα] = 0. Stationary phase relations between the parts may exist.
In the case of an indecomposable h with no zero-eigenvalues it can be shown, as

a companion to proposition 14, that the unique stationary state is an attractor. See
subsection 3.4.

Parts (a) and (b) of theorem 15 and formula (19) allow for an inversion, constructing an
operator h in such a way that the evolution generated by Dh has to lead to a given state ρ.

Theorem 16 (construction of a simple evolution leading to a given state). For ρ either a pure
state or a state with a density matrix of full rank, but non-constant, there exist dynamical
semigroups with a simple GKS–Lindblad generator which have the given ρ as the unique
stationary state.

Proof. In case ρ is a pure state, take an indecomposable h with just one zero eigenvalue, so
that hρ = 0. This may be, for example, h = ∑

j |φj 〉〈φj+1|, with |φ0〉〈φ0| = ρ.
In case ρ is a matrix of full rank, construct h = U |h| with |h| = ρ−1/2, as it has to

be according to formula (19). This h is decomposable iff there exists a nontrivial projector
P commuting with h. This commutation implies also the commutation of P with h†, with

11
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|h|2 = h†h and with |h|. Since this |h| has no zero eigenvalue and is invertible, P has also to
commute with U. As commuting operators, P and |h| have common eigenvectors φj , such that
|h| = ∑

j r
−1/2
j |φj 〉〈φj |, and P = ∑

j∈I |φj 〉〈φj |. Now one has to consider a unitary operator
U which mixes all the eigenspaces of |h| belonging to different eigenvalues. This may be, for
example, U = ∑ |φj 〉〈φj+1|+ |φN 〉〈φ0|, where N is the dimension of the Hilbert space. Such a
U does not commute with any P of the sort which commutes with h, and h is indecomposable.

�

For exceptional ρ, not pure but not invertible, and also for the maximally mixed ω, it is
possible to find a semigroup with this ρ as a stationary state; however, it will not be the unique
one.

3.4. The geometry of paths

The geometric characterization of the paths ρ(t) is equivalent to the algebraic characterization
of the superoperator D, determining its eigenvalues, its proper eigenspaces and also the
generalized eigenspaces. Logical arguments can work in both directions, from geometry to
algebra or vice versa.

On the geometrical side, we know that positivity of ρ is preserved, that the compact set S
of states is mapped into itself. The algebraic consequence for D is that there is no eigenvalue
with strictly positive real part. The detailed argument for this fact can be seen in the following
discussion which is needed for deeper analysis.

The reflection σ ↔ σ † is compatible with the action of D, i.e. D(σ †) = [D(σ )]†. The
consequences are: if an eigenvalue λ of D is a real number, the accompanying eigenmatrix
and generalized eigenmatrices—if there exist any—can be chosen as selfadjoint. Each pair of
a complex eigenvalue λ together with the eigenmatrix σ has a mirror companion in the pair
λ∗ and σ †. For the set of selfadjoint matrices this implies that for each complex number z

the matrix τz = zσ + z∗σ † lies on a path τz(t) which is a spiral. The imaginary part of λ

determines the time T of revolution, the real part gives the change of the HS-norm.

T := 2π/Im(λ), τz(T ) = e2πRe(λ)T τz. (20)

Now consider any ρ in the interior of S, and some number ε, such that

ρ± = ρ ± ετz (21)

are both inside of S. Their distance changes exponentially in time,

‖ρ+(t) − ρ−(t)‖ = ‖ρ+(0) − ρ−(0)‖ · e2πRe(λ)t .

But both of them remain in S, their distance cannot increase, Re(λ) � 0.
It remains to discuss the cases of Re(λ) = 0. We know for sure that stationary states

exist. They are eigenmatrices to the eigenvalue λ = 0. We state the absence of other cases as
the following theorem.

Theorem 17 (no circular paths). There are no circular paths in the HS-space of matrices;
there are no eigenvalues λ of D on the imaginary axis except λ = 0.

Proof. We decompose the Hilbert space H = ⊕
j PjH and the operator h = ∑

j PjhPj into
indecomposable parts, as stated in proposition 6. For matrices σ we use the block matrix
decomposition σ = ∑

j,� PjσP� and observe the mutual independence of evolutions for the
blocks, D(PjσP�) = PjD(σ )P�. So the search for eigenmatrices can be done by considering
single block matrices.

12
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First we consider hj having zero as an eigenvalue. We know by proposition 14 that all
the states PjρPj move to the attractive face, where nothing changes in time any more. Now
consider the path ρ+(t) starting with ρ0 + ετ+, as in equation (21). ρ0(t) moves to a ρ∞ on the
attractive face, as t → ∞. Also ρ+(t) has to stay inside of S, moving to the attractive face,
where there can be no circular path. So also ρ+(t) has to approach ρ∞, so Re(λ) < 0, strictly.
The path may have the structure of a tornado.

For a matrix σ = PjρP�, giving the phase relation between Hj and H�, we know that it
has to move to the subspace of matrices obeying hjσ = 0, because of preserving positivity for
states on the domain Hj ⊕ H�. For such a σ the time evolution is dictated as σ̇ = − 1

2σh
†
�h�.

This gives either exponential decrease in time, or invariance, or a combination of both, but no
circular path, no nonzero eigenvalue of D on the imaginary axis.

Now it remains to consider those σ = PjσPj and σ = PjσP� where neither hj nor h�

do have zero as an eigenvalue. Here we turn to study the adjoint D†. It determines the time
evolution in the Heisenberg picture. Its set of eigenvalues is the complex conjugated set of
eigenvalues of D, so these sets are actually identical.

We use the Kadison inequality, [K52] (See appendix A.2),

�t(F
†F) � �t(F

†)�t(F ) (22)

which holds for the mapping F �→ �t(F ) of time evolution in the Heisenberg picture.
Consider an eigenmatrix F = P�FPj , with D†(F ) = λF . The adjoint F † is an

eigenmatrix with eigenvalue λ∗ Assume λ = ir with r ∈ R. Then �t(F
†)�t(F ) =

(e−irtF †)(eirtF ) = F †F . The matrix F †F maps Hj into Hj and is positive. Take the
projector onto an eigenvector with the largest eigenvalue, which is ‖F †F‖, as a density matrix
ρ, and switch for the moment between the Schrödinger and the Heisenberg pictures:

Tr[ρ(t)F †F ] = Tr[ρ�t(F
†F)] � Tr[ρF †F ] = ‖F †F‖. (23)

The mean value over the time � 0 has to give the stationary state ρ̄ on Hj , which is unique
and has no zero eigenvectors in Hj , see theorem 15.

Tr[ρ̄F †F ] = lim
T →∞

1

T

∫ T

0
Tr[ρ(t)F †F ] � ‖F †F‖. (24)

On the other hand, obviously Tr[ρ̄F †F ] � ‖F †F‖, so Tr[ρ̄F †F ] = ‖F †F‖. In a basis where
ρ̄ is diagonal, the matrix representing F †F has therefore all diagonal elements equal to its
norm, which implies vanishing of all the off-diagonal elements, so F †F = ‖F †F‖1j .

If � = j one finds also FF † = ‖FF †‖1� by doing analogous investigations. A first
consequence is that the existence of such an eigenmatrix is possible only if Hj and H� have
equal dimension. With FF †F = F‖F †F‖ = ‖FF †‖F we conclude ‖F †F‖ = ‖FF †‖, so
V := F/

√
‖F †F‖ is a unitary operator if Hj = H�; and it is an isometry between Hj and

H� if these are different subspaces. We turn back to the Heisenberg picture and multiply the
evolution equation (8) for V from the left by V †:

V †D†(V ) = V †h
†
�V hj − 1

2V †h
†
�h�V − 1

2V †V h
†
jhj = V †λV = ir1j . (25)

We insert V V † between h
†
� and h�, define ĥ� = V †h�V , take the trace and read it as an equation

for inner products in the HS-space:

〈ĥ�|hj 〉 = 1
2 (〈ĥ�|ĥ�〉 + 〈hj |hj 〉) + irn, (26)

where n = dim(Hj ). For j = � we can conclude immediately that λ = ir = 0. For j = �

this follows from the Cauchy Schwarz inequality and the inequality between the geometric
and the arithmetic mean

|〈ĥ�|hj 〉| � ‖ĥ�‖‖hj‖ � 1
2 (‖ĥ�‖2 + ‖hj‖2). (27)

�
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4. Special systems and examples

4.1. Dephasing

The stable phase relations between indecomposable parts have been identified in theorem 15.
In some special cases, we can state details on the integrated evolution: one may restrict the
study to indecomposable parts. We use the same notation as in appendix A.2, applied to the
operators in the subspace Hj ⊕ H�, writing A = hj and D = h� for the parts of h. The phase
relations are expressed in Q = ρj,�. They evolve, according to equation (A.11), as

Q̇ = AQD† − 1
2 (A†AQ + QD†D). (28)

(1) Looking at a diagonalizable h, with A = a and D = d just numbers, the phase relations,
the off-diagonal elements of ρ, evolve according to equation (28) as

d

dt
q = −1

2
(|a − d|2 + (a∗d − ad∗))q, (29)

giving exponential decrease, |q(t)| = exp(−|a−d|2)q(0), together with a phase rotation.
(2) Consider D = h� having zero-eigenvectors and QD† = 0. Then

Q̇ = − 1
2A†AQ.

Expand Q = ∑
α cαQα with A†AQα = aαQα . Exponential decrease is the consequence:

Q(t) =
∑

α

e−taα/2Qα. (30)

(3) Consider H� as one-dimensional, with h� = d, and the other part hj = A as
indecomposable. Then equation (28) implies monotone decrease of Tr(Q†Q):

d

dt
Tr(Q†Q) = −Tr(Q†[(A† − d†)(A − d)]Q) � 0. (31)

This inequality is strict, unless d is an eigenvalue of A and the columns of Q are
corresponding eigenvectors. In the case of (A − d)Q = 0 this first-order derivative of
‖Q‖2 vanishes. Nevertheless one gets

Q̇ = (|d|2 − 1
2A†d − 1

2 |d|2)Q = 1
2d(d∗ − A†)Q = 0, (32)

since A is an indecomposable hj , so A and A† have no common eigenvalues. There is
no stationary phase relation. The second-order derivative of Q†Q in t is also zero, but the
third-order derivative is strictly negative.

To make the calculation transparent, we consider Q as an element |Q〉 of the Hilbert–
Schmidt-space, with the inner product 〈P |Q〉 = Tr(P †Q). Time-derivative is a super-operator
D, mapping |Q〉 to |Q̇〉. In the formulas we use the same letter A for the special super-operator
which we define as A|Q〉 := |AQ〉, as for the operator in H.

|Q̇〉 = D|Q〉 = [− 1
2 (A† − d∗)(A − d) + 1

2 (Ad∗ − A†d)
]|Q〉. (33)

Its adjoint operator is

〈Q̇| = 〈Q|D† = 〈Q|[− 1
2 (A† − d∗)(A − d) − 1

2 (ad∗ − A†d)
]
. (34)

In this formalism we get d
dt

TrQ†Q = 〈Q|(D† + D)|Q〉 and

dn

dtn
TrQ†Q =

n∑
m=0

(
n

m

)
〈Q|D†mDn−m|Q〉. (35)

14
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The assumption AQ = dQ gives (D† + D)|Q〉 = 0 and its adjoint, 〈Q|(D† + D) = 0. Now
we write the second and first derivatives, using (35), as

d2

dt2
TrQ†Q = 〈Q| ((D† + D)D + D†(D† + D)

) |Q〉 = 0,

and, using |Q〉〈Q|/‖Q‖2 < 1,
d3

dt3
TrQ†Q = 〈Q|((D† + D)D2 + D†(D† + D)D + D†2

(D† + D))|Q〉
= 〈Q|D†(D† + D)D|Q〉 = −〈Q|D†(A† − d∗)(A − d)D|Q〉
� −〈Q|D†(A† − d∗)|Q〉〈Q|(A − d)D|Q〉/‖Q‖2

= −
∥∥∥∥1

2
d(d∗ − A†)Q‖4/‖Q

∥∥∥∥
2

< 0,

with a strict inequality, as in equation (32).
We warn of thinking to generalize these examples. There is in general no monotone

decrease of phase relations, not in the form of a decrease of the HS-norm of Q. Some remarks
are stated in subsection 4.3.

4.2. Two-dimensional systems

We present the stationary states, the investigations on the eigenvalues and eigenmatrices of D,
and make remarks on the paths.

If h is constant, then Dh is zero. This case is nevertheless worth mentioning. In the way
of decomposing a larger system it may appear as a restriction to a subspace. The constant h is
then active in the evolution of the phase relations with other subspaces.

For non-constant h consider the triangulated representation

h =
(

a b

0 d

)
. (36)

• If b = 0 there are four eigenmatrices of Dh,(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

the first two belonging to the eigenvalue 0, the other two to λ = 1
2 |a − d|2 + 1

2 (a∗d − ad∗) and
to λ∗. Each diagonal ρ is constant in time, dephasing occurs as stated in subsection 4.1(a).

• For any h with b = 0 there is a unique normed stationary state ρ, with

ρ =
(

r q

q∗ s

)
, r = 1 − s, s = |a|2

|a|2 + |b|2 + |d|2 , q = −a∗b
|a|2 + |b|2 + |d|2 . (37)

This is easily seen by considering equations (A.10)–(A.12) in the simpler form with numbers
instead of matrix-blocks; and it is, of course, consistent with equation (19).

Any kind of ρ can appear as a stationary state for some Dh, except the maximally mixed
ω = 1/2. The stationary ρ0 is a pure state if a = 0 or d = 0.

Concerning all the eigenvalues λ of Dh and its eigenmatrices σ = (r q

p s

)
, we note that the

preservation of the trace takes the form ṡ + ṙ = λ(r + s) = 0. The case λ = λ0 = 0 involves
the unique stationary state. The other eigenmatrices belong to λi = 0 and have r + s = 0. By
using equations (A.11)–(A.13), together with this condition Trσ = 0, one gets the eigenvalue
equation σ̇ = Dh(σ ) = λσ in the form

d

dt

⎛
⎝q

p

s

⎞
⎠ =

⎛
⎝ad∗ − ‖h‖2

2

/
2 0 bd∗

0 a∗d − ‖h‖2
2

/
2 b∗d

− 1
2ab∗ − 1

2a∗b −|b|2

⎞
⎠

⎛
⎝q

p

s

⎞
⎠ = λ

⎛
⎝q

p

s

⎞
⎠ . (38)
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The remaining eigenvalues of D are the zeros of the characteristic polynomial for the 3 × 3
matrix appearing in this equation.

• For a = 0 there are only real eigenvalues. They are λ1 = −|b|2, λ2 = λ3 = −‖h‖2
2

/
2,

the eigenmatrices are

σ1 =
(|b|2 − |d|2 2bd∗

2b∗d |d|2 − |b|2
)

, σ2 =
(

0 1
0 0

)
, σ3 =

(
0 0
1 0

)
. (39)

For a = 0 and |b| = |d| = 0 all three zeros of the characteristic polynomial coincide,
and the eigenmatrix σ1 is no longer linearly independent of σ2 and σ3. But there is now a
generalized eigenmatrix

σ̂1 =
(

1 0
0 −1

)
,

satisfying the equation D(σ̂1) + |b|2σ̂1 = |b|2(σ2 + σ3).
• For a = 0, b = 0, d = 0 (note that d = 0 is equivalent to a = 0) the three eigenvalues of

D which are not zero have to be calculated by finding the zeros of the characteristic polynomial
for the matrix appearing in (38), a polynomial of third order. A simple case occurs when a
and d are real numbers and either b or bi is also real. In these cases, one real eigenvalue is
λ1 = −(|a − d|2 + |b|2)/2, and the corresponding eigenmatrix σ1 is, in case b is real, the
selfadjoint matrix σ1 = ( 0 i

−i 0

)
. In case b is imaginary it is σ1 = (0 1

1 0

)
.

• Quitting the boundary, starting from the lazy state ρ(0) = (1 0
0 0

)
: the eigenvalue e(t)

to the density matrix ρ(t), starting as e(t) = 0, can be analyzed in its behavior as an analytic
function. Its Taylor expansion gives, as has been stated and proved in lemma 11, ė(t) = 0 and
ë(t) = 0. Continuing the procedure of solving the eigenvalue equation term by term according
to the order of tn gives

d3

dt3
e(t)|t=0 = 1

2
|a|2|b|2|a − d|2.

Also this third-order derivative vanishes if a = d, whereas, in this case

d4

dt4
e(t)|t=0 = 7

8
|a|2|b|6.

4.3. Mixing and demixing

The mixing property of a state can change, in the course of time, in any direction for general h.
The case of dissipation can start with a pure state and will end up in a mixed state. In the case
of decay, when h has only one eigenvector to the eigenvalue zero, each mixed state will decay
and approach the pure decay product. The path in S can also start from the boundary and go
through the maximally mixed state ω, the following evolution will then act as purifying. This
means increase of entropy, followed by its decrease. Such cases have been found numerically
in [NTP07] and in [D04]. If such an up-and-down process appears in parallel fashion in
two parts of the system, the phase relations between them can also show this non-monotonic
behavior.

One may imagine a fast decay procedure with up–down evolution of entropy in a subspace,
followed by a slower procedure, going over to another subspace. What is the end product of
the first decay is then decaying again. It is of course possible that these happenings repeat
several times, giving several ups and downs of entropy. From the mathematicians point of view
there is the question of forming functions by superpositions of a finite number of exponential
functions. In reality these things happen in nuclear processes.
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5. Summary and conclusion

We consider the quantum-dynamical semigroups representing time evolutions of open systems
with finite-dimensional Hilbert space. In this paper, we concentrate on semigroups with
a simple GKS–Lindblad generator. An inequality concerning the decay of eigenvalues is
recognized as an important clue to the behavior of mixed states near the boundary of the set
of states; the rank cannot decrease in finite time. The complementary clue is a study on the
increase of the rank of ρ(t), eigenvalues which start at zero getting positive. There are few
exceptions to an increase in first order ∼ t . For this analysis the characterization of structures
is essential, representing the operator h which is used to build the generator Dh as an upper
triangular matrix. In relation to the subspaces appearing as eigenspaces to h we define, in
one-to-one correspondence, certain faces of S, the convex set of states, as ‘lazy’ faces, since
the rank of the ρ in such a face does not increase in first order ∼ t .

The three basic ways of non-invertible time evolution in physics, i.e. dissipation, decay and
decoherence/dephasing are mirrored in the mathematical structures of h and of the generator
Dh, and the decomposition of h is the basis for a complete characterization of all the stationary
states, including a concrete formula. We have moreover characterized the dephasing as not
allowing circular paths of states, and we have characterized the stationary states as attractive.
With a view on applications in ‘quantum engineering’ we stated a possibility of inverting the
task: find an evolution which leads to a given state. This task can be fulfilled for each state
with one exception: the maximally mixed state.

Hereupon we demonstrated the findings on two-dimensional systems.

Appendix

A.1. Complete positivity

Dynamical maps of S into S have to preserve the trace. The dual maps are then ‘unital’ i.e.
they map 1 to 1.

Stinespring’s theorem states that φ mapping B(H) to B(H) is completely positive and
unital iff

∃H2, ∃U = (U †)−1 on H ⊗ H2, ∃ρ2 ∈ S(H2)

∀F : �(F) = Tr2 ((1 ⊗ ρ2) · U † · (F ⊗ 1) · U).
(A.1)

The predual map, acting on a state represented by the density matrix ρ ∈ B(H), is therefore

ρ �→ Tr2(U · (ρ ⊗ ρ2) · U †). (A.2)

From a physicists point of view, (A.1) or (A.2) are the relevant equations for a quantum
dynamical map, where B(H) is the algebra of observables for a system, and ρ2 ∈ S(H2) is the
state of the ‘reservoir’. So we actually do not need the mathematicians definition of complete
positivity. In the following, we use only (A.1) instead.

Proposition 18 (the Kadison inequality). If � is a unital completely positive map
B(H) → B(H), then for each F ∈ B(H) there holds the inequality

�(F †F) � �(F †)�(F ). (A.3)

Proof. By doubling the ‘reservoir’-space H2 to H2 ⊗H2 one can consider the state ρ in B(H2)

as the restriction of an entangled pure state, with a state vector � in H2 ⊗ H2. Letting U act
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on H ⊗ H2 ⊗ H2 one can reformulate (A.1) as

�(F) = 〈�|U † · (F ⊗ 1 ⊗ 1) · U |�〉. (A.4)

Now using |�〉〈�| < 1 in �(F †) · �(F) gives the Kadison inequality. �

If one feels uneasy with the abstract algebraic notation, one may read (A.4) as

〈φ|�(F)|ψ〉 = 〈φ ⊗ �|U † · (F ⊗ 1 ⊗ 1) · U |ψ ⊗ �〉, (A.5)

and use a set |φn〉 of basis vectors in H to write the product �(F †) · �(F) in matrix notation,
and insert

∑
n |φn ⊗ �〉〈φn ⊗ �| < 1 between �(F †) and �(F).

A.2. Block matrices

Consider a splitting of H into subspaces, H = H1 ⊕H2. Write vectors ψ = χ ⊕ φ as
(χ

φ

)
and

write operators acting in H as block matrices:

h =
(

A B

C D

)
(A.6)

ρ =
(

R Q

Q† S

)
. (A.7)

The action of Dh : ρ �→ ρ̇ =
(

Ṙ Q̇

Q̇† Ṡ

)
. (A.8)

We need two special cases.
The first one is the case of density matrices ρ with rank less than the dimension of the

Hilbert space:

If Q = 0 and S = 0, then Ṡ = CRC†. (A.9)

The second special case with no restriction on ρ uses the Schur–Toeplitz triangulation, [L69],
of the generating matrix h: If C = 0, then

Ṙ = DA(R) + BSB† + AQB† + BQ†A† − 1
2 [QB†A + A†BQ†] (A.10)

Q̇ = AQD† + BSD† − 1
2 [A†AQ + QB†B + QD†D + RA†B + A†BS] (A.11)

Ṡ = DD(S) − 1
2 [B†BS + SB†B + B†AQ + Q†A†B]. (A.12)

For a general matrix

σ =
(

R Q

M S

)
,

which is in general not selfadjoint, we have to replace Q† in (A.10) and in (A.12) by M, and
we also need

Ṁ = DMA† + DSB† − 1
2 [MA†A + B†BM + D†DM + B†AR + SB†A]. (A.13)
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